
Data-Driven Model for Solar Irradiation Based on

Satellite Observations

Ilias Bilionisa, Emil M. Constantinescua, Mihai Anitescua

aMathematics and Computer Science Division, Argonne National Laboratory, 9700 S.
Cass Avenue, Argonne, IL 60439. Emails: {ebilionis,anitescu,emconsta}@mcs.anl.gov

Abstract

We construct a data-driven model for solar irradiation based on satellite ob-
servations. The model yields probabilistic estimates of the irradiation field
every thirty minutes starting from two consecutive satellite measurements.
The probabilistic nature of the model captures prediction uncertainties and
can therefore be used by solar energy producers to quantify the operation
risks. The model is simple to implement and can make predictions in realtime
with minimal computational resources. To deal with the high-dimensionality
of the satellite data, we construct a reduced representation using factor anal-
ysis. Then, we model the dynamics of the reduced representation as a discrete
(30-minute interval) dynamical system. In order to convey information about
the movement of the irradiation field, the dynamical system has a two-step
delay. The dynamics are represented in a nonlinear, nonparameteric way by a
recursive Gaussian process. The predictions of the model are compared with
observed satellite data as well as with a similar model that uses only ground
observations at the prediction site. We conclude that using satellite data
in an area including the prediction site signficantly improves the prediction
compared with models using only ground observation site data.

Keywords:
insolation, irradiance, Bayesian, recursive Gaussian process, factor analysis,
dimensionality reduction, dynamical system

Preprint ANL/MCS-P5141-0514

1. Introduction

Solar irradiation is the amount of power per square meter that reaches
the Earth from the Sun. In solar energy applications, part of the solar ir-
radiation can be converted to electricity. In contrast to conventional power
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sources such as coal or gas, solar irradiation is volatile and uncontrollable
by the user. The two most important factors of the solar irradiation vari-
ability are the movement of the Sun and weather fluctuations. The former
can be captured mathematically to great accuracy, because it is a determin-
istic effect. The latter is a chaotic effect, and hence the main cause for the
difficulties associated with forecasting solar irradiation.

All the stages of a solar-power conversion project need to take into account
the risks associated with solar irradiation. For the feasibility and design
phases of the project, historical data can be employed to quantify these
risks. The risks associated with the operation phase, however, require the
ability to make short-term predictions (from 1 to 8 hours ahead) of the solar
irradiation.

The most widely used solar irradiation forecasting methodologies are
those that rely only on pointwise ground measurements of the solar irradia-
tion. The reason is that ground measurements are readily available at any
solar energy production plant. Mathematically, these techniques fall into the
category of single-value time series analysis. Time series analysis methods
include the autoregressive integrated moving average (ARIMA) processes [1]
(see [2] for a first-order autoregressive model (AR(1)) and [3, Ch. 15.2.2.] for
ARIMA examples), and artificial neural networks (ANNs) [4]. The accuracy
of the predictions of these models degrades rapidly as the forecasting window
is increased. This result is expected because the weather fluctuations exhibit
a nonlocal behavior; see [3, Ch. 15] for a comprehensive review.

More accurate forecasts can be achieved only if nonlocal data are taken
into account. For short-term (0-30 minutes) forecasts, a promising approach
is to use total sky imager technologies [5]. One takes pictures of the sky
from a particular site, extracts information about the clouds, constructs the
cloud motion vectors (CMVs) and moves the image forward in time. Using
geometrical arguments and semi-empirical models, one recovers the solar
irradiation from the cloud information at that later time. The time frame
for which this approach is useful depends on the velocity of the clouds.

Longer forecasts (hours to days) are feasible if satellite data are used.
For forecasts ranging from 30 minutes to 6 hours ahead, the data-driven
technique introduced in [6] may be used. As a first step, the semi-empirical
heliostat method of [7] is used to extract cloud structure information from
the satellite images. Then, as in the sky imager-based techniques, two con-
secutive images are compared in order to construct the CMVs. The cloud
information is moved forward in time using the CMVs and goes through a
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final smoothing phase. Solar irradiation is recovered by again employing the
heliostat method. Numerical Weather Prediction (NWP) may be used for
forecasts of up to 6 days or longer. For example, in [3, Ch. 10] the sky-
cover fraction of the U.S. National Digital Forecast Database is coupled with
semi-empirical models to produce long-term forecasts of solar irradiation.

The main disadvantage of most these aforementioned techniques is that
they are difficult to use, and, sometimes, unable to quantify the uncertainty
in their predictions. Given the current evolution of decision systems for
energy toward incorporating stochastic representations [8], this may be a
serious shortcoming. It is hard to see how to consistently add an uncertainty
model to the heliostat approach. NWP models can in principle be modified
to support an ensemble-based approach to uncertainty, but at a significant
computational cost that requires a dedicated supercomputer [9]. Among the
methods described, only the ARIMA-based methods can provide error bars
for the predictions with a small or moderate effort. Yet, it is exactly these
error bars that help quantify the potential risks and allow the stakeholders
to properly price them.

These considerations have motivated us to develop a fully stochastic
model that can quantify forecast uncertainties. In addition, aiming for a
model that is convenient even for lean operations, we propose a model that
is considerably easier to implement than any satellite-based model and can
produce predictions in realtime with minimal computational resources.

Our model building philosophy and paper can be sumarized as follows.
As a first step, the Sun’s movement effect on the satellite observed solar ir-
radiation field (Sec. 2.1) is removed by dividing it with a clear sky model
(Sec. 2.2) to get the clear sky index field. Our goal is to use consecutive
observations of the clear sky index field in order to learn its dynamics. Be-
cause of its high-dimensional nature, we construct a reduced-dimensionality
representation of it (Sec. 2.3). To learn the dynamics of this low-dimensional
representation, we use a nonlinear, nonparametric technique known as re-
cursive Gaussian process (Sec. 2.4). Having constructed the dynamics of the
reduced space, forecasts can be performed for an arbitrary number of time
steps ahead (Sec. 2.5). Our recursive Gaussian process is similar in concept
to the ANN used in [4]. However, our model is Bayesian, a key feature that
enables us to make not only best estimates but also probabilistic forecasts.
We then present (Sec. 3) our numerical results for an 8-hours-ahead forecast,
and we compare them pointwise with those obtained by a recursive Gaussian
process model based only on ground observations. We observe that using
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satellite data significantly reduces the forecast uncertainties and improves
the forecast itself. We attribute this improvement to the nonlocal informa-
tion carried by the satellite images and to the space-time correlation between
the solar irradiation at the prediction site and at neighboring sites.

2. Methodology

Throughout this work, we denote the solar irradiation field by I(φ, λ, t),
where φ, λ and t are the latitude, longitude, and time, respectively. The units
of I(φ, λ, t) are power per square meter.

2.1. Observations of Solar Irradiation

The solar irradiation field can be observed almost instantaneously by
processing satellite images. For simplicity, we restrict our attention to data
coming from the continental United States (CONUS) scan of the GOES-13
satellite. The CONUS scan takes place almost every 30 minutes and has a
resolution of 1 km. The solar irradiation field is constructed by processing
the raw data collected by the Advanced Very High Resolution Radiometer
(AVHRR) via the algorithms described in [10]. This product is reported
as part of the Clouds from AVHRR Extended (CLAVR-x, https://cimss.
ssec.wisc.edu/clavr/) data and is available in realtime from the University
of Wisconsin (ftp://ftp.ssec.wisc.edu/clavr/goes_east/processed/.
The CLAVR-x data are available on a grid of latitudes and longitudes de-
scribed by φij and λij for i = 1, . . . , Pφ, j = 1, . . . , Pλ, where Pφ and Pλ
denote the number of pixels on each dimension. That is, at time t we ob-
serve a matrix I(t) = (Iij(t)) of size Pφ × Pλ:

Iij(t) = I(φij, λij, t). (1)

The dimensions of the observed matrix for the CONUS scan are Pφ =
1, 900, Pλ = 3, 100. For computational reasons, we work with a submatrix of
the CONUS scan of dimensions Pφ = Pλ = 400 that is centered on a site of
interest. We refer to this submatrix as the patch.

The time resolution of the data is irregular. In particular, we have obser-
vations every thirty minutes, with the exception of 03:00, 06:00, 09:00, 12:00,
15:00, 15:30, 18:00, 21:00, and 00:00 UTC daily as well as 17:00 UTC every
Wednesday. In addition, early morning and late afternoon measurements
are not useful, because of the very low irradiation values that are observed.
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Therefore, we drop from our dataset observations that take place during
nighttime (i.e., the period between two hours before sunset up to two hours
after sunrise the next day, when sunset and sunrise times are calculated for
an observer standing at the center of the patch). We denote the times for
which we actually have observations by tk, k = 1, . . . Kt. Then, our observed
dataset consists of

DI = {I(tk) : k = 1, . . . , Kt} . (2)

2.2. Clear Sky Model and the Clearness Index

The presence of daily and seasonal trends makes the direct modeling of
I(φ, λ, t) problematic. On the one hand, the daily part is characterized by
(1) no variation over night (the solar irradiation field is equal to zero), (2)
increasing values and variance until noon, and (3) decreasing values and
variance from noon till sunset. On the other hand, the seasonal trend is
characterized by (1) low values during winter and high values during summer,
and (2) high variance during winter and low variance during summer. The
change in the mean values of the field is directly chained to the solar zenith
angle, which varies daily as well as seasonally. The higher variance during
winter days is attributed to the rapidly changing weather conditions. To
partially address these trends, we model the clearness index instead of the
solar irradiation field. In order to properly define the clearness index, the
concept of a clear sky model is required.

A clear sky model approximates the expected solar irradiation when no
clouds are present. Typically, it depends on the extraterrestrial irradiation
((W/m2) at the top of Earth’s surface), the solar zenith angle at a partic-
ular Earth site, the elevation of the site above sea level, the composition of
atmospheric gases such as water vapor and ozone content, and the atmo-
spheric aerosol content (see [3, 2.3]). Many clear sky models may be used
(e.g., [11, 12]). However, given the variability in the total solar irradiation
due to the cloud variability, very high accuracy of the clear sky model is not
extremely important here. We thus opt for Ineichen’s model [12], which is a
surrogate of the more accurate Solis model [13]. The Ineichen model depends
on the extraterrestrial irradiation, the solar zenith, the elevation of the site
above sea level, the atmospheric water vapor content, and the aerosol optical
depth at 700 nm. We denote the global clear sky irradiation of Ineichen’s
model by Icls(φ, λ, t). Details on the various model parameters are given in
Appendix A.
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We can now define the clearness index field as the ratio of the solar
irradiation field to the clear sky model:

C(φ, λ, t) =
I(φ, λ, t)

Icls(φ, λ, t)
. (3)

The observed data of Eq. (1) may be expressed in terms of the clearness
index by

DC = {C(tk) : k = 1, . . . , Kt} , (4)

where C(t) is the Pφ × Pλ-matrix defined as

Cij(t) =
Iij(t)

Icls,ij(t)
=

I(φij, λij, t)

Icls(φij, λij, t)
,

for i = 1, . . . , Pφ, j = 1, . . . , Pλ.
Our goal is to model the evolution of the clearness index field C(φ, λ, t)

based on the observations included in Eq. (4). In reality, we will be focusing
on a discrete version of the problem, namely, modeling the evolution of the
matrix C(t). Since the clear sky model may be evaluated anywhere at will,
the solar irradiation field can be recovered in a trivial way from Eq. (3).

We note that some trends do persist even after switching to the clearness
index. In particular, the clearness index field exhibits a seasonal trend in its
variance similar to that of the solar irradiation field. However, this remaining
trend is inconsequential, because our goal is to make short-term forecasts.

2.3. Dealing with the Curse of Dimensionality

The mathematical problem we are facing is the data-driven determination
of the dynamics of an extremely high-dimensional system. The very small
patch of data we are considering has 160, 000 ((400 × 400) dimensions. At-
tempting to learn the dynamics of the clearness index directly is not tractable.
Clearly, we must resort to some kind of dimensionality reduction technique.

The observed data are in the high-dimensional space RPφ×Pλ . However,
we expect them to be constrained on a low-dimensional manifold embedded
in this high-dimensional space. This expectation is based on the spatial
correlations of the field that are induced by physical laws involving cloud
transportation, nucleation, and annihilation. In the hypothetical scenario of
a truly Pφ×Pλ-dimensional manifold, there would be no spatial correlations.
But such a scenario is not supported by the data: displaying succesive maps
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of the solar irradiation field shows evolution of persistent moderate scale
patterns, which is consistent with nontrivial spatial correlation.

To be precise, let Mh ⊂ RPφ×Pλ denote the manifold in which the clear-
ness index lives. Mathematically, it is defined as

Mh = {C(t) : for all t}. (5)

We expect the true dimensionality of this manifold to be less than Pφ × Pλ.
That is, we expect that it can be parametrized with fewer than Pφ × Pλ
variables.

A dimensionality reduction technique should provide two maps: a reduc-
tion map, and a reconstruction map from and toMh, respectively. A reduc-
tion map R : Mh → RR projects the original data to the low-dimensional
space RR with R� Pφ × Pλ. A reconstruction map C : RR →Mh maps the
low-dimensional space back to the original one. A good pair of reduction-
reconstruction maps (R, C) should have an R as small as possible and also
satisfy the following property,

C (R (C(t))) ≈ C(t), (6)

with “≈” being interpreted as “close” in some appropriate norm. In other
words, the reconstruction map should approximately be the inverse of the
reduction map. In reality, we always expect some information loss along the
way. After finding a good (R, C) pair, our goal will be to model the dynamics
of the R-dimensional projections of the original data. This is a much easier
task than dealing directly with C(t). To clarify this point, let us denote by
x(t) ∈ RR the reduced variables:

x(t) = R (C(t)) . (7)

Our goal is to capture the dynamics of x(t). The original dynamics can be
recovered by passing x(t) through the reconstruction map. The observations
we have at hand for this are induced by Eq. (4) through the reduction map

Dx = {x(tk) = R (C(tk)) : k = 1, . . . , Kt} . (8)

This is the topic of Sec. 2.4. For the moment, we focus on finding (R, C).
The only information available for determining the pair (R, C) is the

observed clearness index dataset DC given in Eq. (4). The dimensionality
reduction technique we will use is the factor analysis (FA)[14, 15, 16]. FA can
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be thought of as a generalization of probabilistic principal component analysis
(pPCA) [17, 18], a probabilistic interpretation of the celebrated principal
component analysis (PCA) (see [19, 20] and for a more recent reference [21,
Ch. 12.1]). PCA works under the assumption that the data manifoldMh is
linear. In other words, one may think of it as an attempt to approximateMh

as being embedded in a low-dimensional affine space. In addition, pPCA and
FA attempt to characterize the uncertainty of the reduction/reconstruction
operations. Both fall into the category of latent linear Gaussian models; but
pPCA uses the same variance to characterize the reconstruction uncertainty,
whereas FA uses a different variance for each distinct feature.

FA works with vectors. Therefore, all quantities must be vectorized before
proceeding further. For notational convenience, let vecm,n : Rm×n → Rmn

be the vectorization operator. The action of the vectorization operator on a
matrix A ∈ Rm×n transforms it into a vector a ∈ Rmn, as follows:

a = vecm,n (A) := (A11, . . . , A1n, . . . , Am1, . . . , Amn) . (9)

In addition, we need the inverse transform vec−1
m,n, which transforms a vector

a ∈ Rmn into a matrix A ∈ Rm×n:

A = vec−1
m,n (a) :=

 a1 . . . an
...

. . .
...

am(n−1)+1 . . . amn

 . (10)

Since we are interested in vectorizing C(t) ∈ RPφ×Pλ , we need to use vecPφ×Pλ .
For brevity, we define the following:

vec := vecPφ×Pλ and vec−1 := vec−1
Pφ×Pλ . (11)

Our problem now is to find a reduced representation of the Kt (PφPλ)-
dimensional observations:

Dc := {c(tk) = vec (C(tk)) : k = 1, . . . , Kt} . (12)

In our discussion of FA we follow closely the work of Bishop [21, Ch.
12.2.4]. Let x ∈ RR be the latent reduced representation of an observed
clearness index vector c ∈ RPφPλ . In FA, we assume that the observed
clearness vector c is generated from x as follows,

p(c|x,W,µ,Ψ) = N (c|Wx + µ,Ψ) , (13)
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where W ∈ R(PφPλ)×R and µ ∈ RPφPλ are the reconstruction matrix, and the
mean vector, respectively, and Ψ ∈ R(PφPλ)×(PφPλ) is a diagonal matrix con-
taining the reconstruction variance of each component of c (each component
is known as a feature). Equation (13) defines a probabilistic version of the
reconstruction map C.

To close the model, one must say how x would be generated if c was
not observed. In FA, one assumes that x is generated from a unit variance
Gaussian,

p(x) = N (x|0, I) , (14)

where I is the unit matrix.
The reduction mapR is also defined probabilistically. One has to compute

the posterior of x conditioned on c and all the parameters (W,µ,Ψ). This
is again a Gaussian of the form

p(x|c,W,µ,Ψ) = N
(
x|GWTΨ−1(c− µ),G

)
, (15)

where
G =

(
I + WTΨ−1W

)−1
. (16)

FA can be trained efficiently by maximizing the likelihood ofDc of Eq. (12)
using the expectation-maximization (EM) algorithm [22]. In particular, com-
bining Eqs. (13) and (14) and assuming independence of the vector c con-
ditional on the projection on principal components x, we need to solve the
following maximization problem:

W∗,µ∗,Ψ∗ = arg max
W,µ,Ψ

p(Dc|W,µ,Ψ), (17)

where the likelihood term is given by

p(Dc|W,µ,Ψ) =
Kt∏
k=1

p (c(tk)|W,µ,Ψ) , (18)

with

p (c(tk)|W,µ,Ψ) =

∫
p (c(tk)|x(tk),W,µ,Ψ) p (x(tk)) dx(tk). (19)

From this point on, for notational convenience we write

φ∗ = (W∗,µ∗,Ψ∗) (20)
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to denote the solution of the maximization problem of Eq. (17). The projec-
tion operator is then stated as

R(C) := G∗W∗T (Ψ∗)−1 (vec (C)− µ∗) , (21)

with G∗ as in Eq. (16) evaluated for W = W∗ and Ψ = Ψ∗.
Certainly the assumption of independence of c conditional on x is ar-

guable, although the problem would become much harder if we did not use
it. On the other hand, should c be entirely contained in the space spanned
by x for all times t, the assumption would be satisfied. The assumption is
thus less restrictive the more accurate the PCA projection is. Therefore,
we anticipate the conditional independence being a good approximation for
forecasting large-scale behavior, which tends to be contained in the principal
components.

We now come to the problem of determining the appropriate value for
R (the dimension of the reduced space). This could be attacked in a fully
Bayesian manner by following the ideas of [23]. In this work, however, we
simply fix R to the maximum value we can afford, given the constraints of
our model. In particular, as R increases so does the number of parameters of
the reduced dynamics model (see Sec. 2.4). Because of the limited number
of observations we have, it does not make sense to select an R that is greater
than 8.

2.4. Learning the Reduced Dynamics

The task of this section is to learn the dynamics of the reduced variables
x(t) (see Eq. (7)) based on Dx (see Eq. (8)). We use a model for non-
linear time-series known as a recursive or dynamic Gaussian process [24, 25].
Such models have been used extensively over the past decade in diverse tasks
including human motion modeling/tracking [26, 27] and nonlinear signal pro-
cessing [28]. For notational clarity, we assume that the time t counts units
of 30 minutes; that is, t− 1 means 30 minutes before t, t− 2 means 60 min-
utes before t, and so forth. We assume that the evolution of x(t) obeys the
following discrete dynamics:

x(t) = f (x(t− 1),x(t− 2)) , (22)

where f : RR × RR → RR is an unknown function to be determined from
the observations Dx of Eq. (8). The reason we have assumed a dependence
on x(t− 2) in addition to x(t− 1) is to include some information about the
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velocity field that transports the clearness index. Simply including x(t −
1) would yield a Markovian model that would not be able to capture any
transport properties.

The idea of a recursive Gaussian process is to represent the function f as
a Gaussian process to be learned from the data. In turn, a Gaussian process
may be thought as a nonparametric way of performing regression tasks [29].
We denote the input of f collectively by z(t) ∈ R2R, where

z(t) = (x(t− 1),x(t− 2)) . (23)

Its output is simply x(t). The data we have available for learning f are

DR = {(z(tk),x(tk)) : tk − tk−1 = 1, tk−1 − tk−2 = 1, k = 3, . . . , Kt} .

That is, each of the (z(t),x(t)) pairs requires exactly three consecutive mea-
surements of the clearness index to be available. For future reference, we
assume that there are N observations in DR as follows:

DR =
{(

z(i),x(i)
)

: i = 1, . . . , N
}
. (24)

The core methodology for Gaussian processes aims at learning real func-
tions, that is, functions with one output. In contrast, here we are dealing with
the problem of learning a multioutput function. Despite the fact that there
is a wealth of methods for learning multioutput functions [30, 31, 32, 33];
we chose a simple approach that treats each output dimension of f , indepen-
dently. In particular, we assume that each of the components fr, r = 1, . . . , R
of f is a Gaussian process representing the evolution of the rth principal com-
ponent

xr(t) = fr (z(t)) . (25)

Each of these functions can be learned from a fraction of the data contained
in DR of Eq. (24). In particular, fr can be learned from

DR,r =
{(

z(i), x(i)
r

)
: i = 1, . . . , N

}
, (26)

where xr is the rth component of x.
At this point, we elaborate on how each of the functions fr is constructed

based on DR,r of Eq. (26) using Gaussian process regression. For notational
convenience, we drop the index r from any equation in this paragraph. For
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more details, the reader may consult [34]. Prior to seeing the data, we assume
that the fr is a draw from a zero mean Gaussian process,

fr ∼ GP (fr|0, k(·, ·;θr)) , (27)

where k : R2R ×R2R → R is a covariance function and θr all its parameters.
Notice that the same covariance function will be used for each r but its pa-
rameters θr will be different. The particular form of the covariance functions
used in the numerical examples is discussed in Sec. 3. The likelihood of the
observed data is

p(DR,r|θ) = N (Xr|0,Ar) , (28)

where Xr is the vector of all the xr’s observed in DR,r of Eq. (26),

Xr =
(
x(1)
r , . . . , x(N)

r

)
, (29)

and Ar ∈ RN×N is the covariance matrix evaluated at θr:

Ar,nm = k
(
z(n), z(m);θr

)
. (30)

To train the model, we maximize the logarithm of the likelihood, Eq. (28),
with respect to θr,

θ∗r = arg max
θr

log p(DR,r|θr), (31)

subject to any constraints we might have. Having found a point estimate θ∗r
of θr, we have as the predictive distribution

p(xr(t)|z(t),DR,r,θ∗r) = N
(
xr(t)|m∗ (z(t)) , σ∗2 (z(t))

)
, (32)

where m∗ is the predictive mean,

m∗ (z(t)) = a∗r (z(t)) A∗r
−1Xr, (33)

and σ∗2 is the predictive variance,

σ∗2 (z(t)) = k (z(t), z(t);θ∗r)− a∗r (z(t)) A∗r
−1a∗r (z(t))T , (34)

where A∗r is the covariance matrix of Eq. (30) evaluated at θ∗r and a∗r (z(t))
is the cross-covariance:

a∗r (z(t)) =
(
k
(
z(t), z(1);θ∗r

)
, . . . , k

(
z(t), z(N);θ∗r

))
. (35)
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Combining the results for every r, we get the multioutput predictive distribu-
tion:

p (x(t)|z(t),DR,θ∗) =
R∏
r=1

p (xr(t)|z(t),DR,r,θ∗r) , (36)

where θ∗ = {θ1, . . . ,θR}. Equation (36) characterizes in a probabilistic man-
ner all the information about the dynamics that we are able to get from the
observations. As shown in Sec. 2.5, iteratively taking samples from Eq. (36)
allows us to make probabilistic forecasts about the evolution of the reduced
dynamics.

2.5. Forecasting the Quantities of Interest

Now we come to the problem of forecasting the clearness index. Our
predictions are going to be probabilistic, and they will be based solely on
Eq. (13), Eq. (15), and Eq. (36).

Assume that we have observed the clearness index at times t0 and t0−1; in
other words, we have observed the matrices C(t0) and C(t0−1), respectively.
We would like to predict the clearness index at future times t = t0 + 1, t0 +
2, . . .. First we need to project the observations to the reduced components
using Eq. (15),

x(t0) ∼ p(x(t0)| vec (C(t0)) ,φ∗),
x(t0 − 1) ∼ p(x(t0 − 1)| vec (C(t0 − 1)) ,φ∗),

(37)

or, in short notation,

z(t0) = (x(t0 − 1),x(t0 − 2)) . (38)

Note that this kind of probabilistic projection accounts for the uncertainty
of the reduction map.

We can take sample paths from the second-order Markov chain defined
by the predictive distribution of Eq. (36) to produce a sample path n steps
long (see Alg. 1). The initial points x(t0 − 1) and x(t0) are assumed to
be sampled as in Eq. (37). That is, we can produce sample paths that go
arbitrarily far into the future, albeit in multiples of 30 minutes. Suppose
that we have taken S > 0 such samples. Let us denote each of them by{
x(s)(t0 + i)

}n
i=1

, s = 1, . . . , S. These can be transformed to sample paths of

the clearness index matrix
{
C(s)(t0 + i)

}n
i=1

, s = 1, . . . , S using Eq. (13):

c(s)(t0 + i) ∼ p
(
c(s)|x(s)(t0 + i),φ∗

)
,

C(s)(t0 + i) = vec−1
(
c(s)(t0 + i)

)
.

(39)
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Equation 13 accounts for the uncertainty of the reconstruction map. If one
wants sample paths

{
I(s)(t0 + i)

}n
i=1

, s = 1, . . . , S, of the solar irradiation,
these can be trivially acquired by using Eq. (3),

I(s)(t0 + i) = C(s)(t0 + i) ∗ Icls(t0 + i), (40)

where Icls(t0 + i) is the Pφ×Pλ matrix containing the evaluation of the clear
sky model at time t0 + i over the whole patch and “∗” stands for elementwise
multiplication of two matrices of the same dimensions.

Algorithm 1 Algorithm taking a single sample path from the second-order
Markov chain defined by Eq. (36)

Require: Observed data: x(t0),x(t0−1), number of steps ahead to predict:
n ≥ 1.

Ensure: {x(t0 + i)}ni=1 is a sample path of the second order Markov chain
defined by Eq. (36).
for i = 1 to n do

Sample x(t0 + i) from p (x(t0 + i)|x(t0 + i− 1),x(t0 + i− 2),DR,θ∗) as
defined in Eq. (36).

end for

3. Numerical Examples

As discussed in Sec. 2.1, the satellite observations of solar irradiation are
obtained from the CLAVR-x project. We have been systematically storing
the CLAVR-x data since October 10, 2013. We will use all valid observations
until February 25, 2014, to train our model. There are 822 such observations.
The number is reduced because of two facts: (1) only observations that take
place 2 hours after sunrise and 2 hours before sunset are retained, (2) there
is a gap in observations during January 2014 because of technical problems
faced by the CLAVR-x group. This constitutes our observed solar irradiation
dataset DI of Eq. (2). From DI , the observed clearness index dataset DC
of Eq. (4) is constructed as outlined in Sec. 2.2. The available data from
February 26, 2014, to March 4, 2014, are used to test our predictions.

Because we would like to compare the performance of our model with
one based on ground observations, we center our 400 × 400 pixel patch on
Lamont, OK (see Fig. 3 for a map of the region and Fig. 2(a) for a sample
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Figure 1: Map of the patch around Lamont, OK, that we consider in our numerical
examples. Source: Google Maps.

(a) Observed C(t) (b) Reconstruction C (R (C(t)))

Figure 2: Sample of the clearness index on a 400 × 400 patch around Lamont, OK, on
March 3, 2014, at 16:00 UTC (a) and its reconstruction with R = 8 components (b).
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clearness index field). For this particular location there exist excellent ground
observations of solar irradiation that we can use for validation [35]. The
ground model to which we compare our results is again a recursive GP on
the clearness index observed at this site. The ground data used for training
span the period from October 1, 2013, to February 25, 2014.

The observed clearness index dataset DC is used to perform the dimen-
sionality reduction task (see Sec. 2.3). In our numerical examples, we have
experimented with R = 4 and R = 8 components without observing any
measurable performance gains by adding more complexity. For R = 16 com-
ponents, the likelihood maximization encounters many local maxima because
the number of parameters is considerably larger. In this case, either a global
approach to maximizing the likelihood or some form of regularization, for ex-
ample a fully Bayesian treatment with priors on the covariance parameters
in (27), is required. We will present results only for the R = 8 case. The
first four principal components ur are visualized in Fig. 3. In Fig. 2(b) we
plot the reconstruction of the observed clearness index of Fig. 2(a) using just
R = 8 components. There certainly is a loss of information when we project
the high-dimensional description to the low-dimensional one. The compres-
sion ratio is about 105, however, and we are able to estimate the error in
prediction by the methods described in the previous section.

Having constructed the reduced representation of the data, we come to
the problem of learning the evolution of the reduced dynamics described in
Sec. 2.4. In Fig. 4 we illustrate the evolution of x(t) of Eq. (7). The stars
correspond to observations. Notice that since the collection procedure has
both weekly and daily irregularities in its protocol, as described in Sec. 2.1,
the data in Fig. 4 show occasional temporal gaps. As a result, of the 822
observations of x(t), only 252 remain in DR of Eq. (24) and can, therefore,
be used to train the recursive GP of Eq. (22). The reason is that we can only
use triplets of three consecutive measurements with a 30-minute lag, and the
gaps in data imply that not all observations are part of such triplets. Such
a limited number of observations in DR constrains the number of degrees
of freedom in the statistical model and consequently limits the size of the
reduced dimension R.

The covariance function we are using in Eq. (27) has the form

k(z, z′;θr) = vr,0 +
2R∑
i=1

vr,iziz
′
i + k0(z, z′;θr,0) + σ2

rδ(z− z′), (41)
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(a) Component 1 (b) Component 2

(c) Component 3 (d) Component 4

Figure 3: Principal components (vec−1(ur)) 1 to 4.

where θr = (vr,0, . . . , vr,2R,θr,0), σr, vr,i ≥ 0, k0 and is a classic covariance
function (see [34, Ch. 4]). Here, r = 1, 2, . . . , R denotes the index of the
reduced components whose evolution is modeled. The first term in Eq. (41)
captures a constant bias. The second, nonstationary, term captures a struc-
tured linear dependence between z and x. The third term captures any
nonlinear dependence. The second term can be interpreted as the effect of
a mean 0 prior on a linear mean term [34, Ch. 2.7]. The last term mod-
els the possible effects of measurement noise (though we anticipate its effect
to be small, since the vector x) is spatially filtered by the projection on
the principal component). The covariance function forms k0(·, ·; ·) we have
experimented with include the squared exponential, the exponential and sev-
eral covariances belonging to the matern class. None of these choices yielded
a significant improvement in the final forecasting capabilities of the model.
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Figure 4: The first four reduced variables x1(t), . . . , x4(t). The time is in UTC, and the
stars indicate observations.

Therefore, we present only those results obtained by the exponential covari-
ance function whose form is

k0 (z, z′,θr,0) = s2
r exp

{
−

2R∑
i=1

|zi − z′i|
`r,i

}
, (42)

where θr,0 = (sr, `r,1, . . . , `r,2R). The parameters sr and `r,i may be inter-
preted as the nonlinear part of the signal strength and its length scale with
respect to the input variable zi, respectively. The number of parameters per
r is |θr| = 4R + 3, and the total number of parameters is R(4R + 3). For
R = 8 this translates to 67 parameters per r that need to inferred from DR,r
of Eq. (26). It now becomes apparent that the low number of observations
(about 250) we have at our disposal does not allow for choosing a large R.

The optimization problem of each r (see Eq. (31)) is solved by using the
BFGS algorithm [36]. To accommodate the nonnegative constraints, we use
an exponential change of variable. The results are shown in Table 1. The ‘*’
symbols for the `r,i scale parameters indicate that their corresponding values
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Figure 5: Quantile plot for one-step-ahead probabilistic predictions.

were greater than 10 and, hence, tend to affect the model signficantly less
than those with smaller values, and displaying them would make the depen-
dence patterns less visible. Parameters displayed as 0.00 are not necessarily
0; they are simply displayed in fixed point to emphasize their lack of signif-
icance. We notice that the bias terms vr,0 are effectively zero. This result
was expected since x(t) are the projections of quantities with mean removed
(21). We also notice notice that given the size of the parameters s2

r, the most
important effect observed originates from the nonstationary component of
our covariance function of Eq. (41). This is the part that captures the linear
part of the correlations between z(t) and x(t). However, the nonlinear part,
coming from k0 of Eq. (42), is also considerable and accounts for about 3%

to 20% of total signal strength as measured by sr/
√∑2R

i=0 vr,i + s2
r (though

that is not a ratio of the variances of the components, which has a far more
complicated expression). This effect becomes more important as we go to
higher FA coefficients. Another important point to notice is that there is no
significant exchange of energy between the linear parts of the signal. That

19



(a) x1(t) versus x1(t− 1) scatterplot (b) x2(t) versus x1(t− 1) scatterplot

(c) x5(t) versus x2(t− 1) scatterplot (d) x8(t) versus x3(t− 1) scatterplot

Figure 6: Scatterplots of xi(t) by xj(t− 1), for (i, j) = (1, 1), (1, 2), (2, 5), (3, 8)

is, xr(t) depends linearly only on zr(t) = xr(t − 1) and zr+R(t) = xr(t − 2).
As expected, the dependence on xr(t − 1) is larger than on xr(t − 2). An
explanation of this phenomenon appears in Fig. 6. We see that the scatter-
plots of xi(t) and xj(t− 1) for various values of j 6= i appear to be null plots:
essentially indistinguishable from the plot of independent random variables.
This phenomenon is essentially the same for other i 6= j cases not displayed
and this explains the insignificant vr,i coefficients for r 6= i. The length scale
parameters `r,i of the nonlinear part are interpreted in a reciprocal manner
to vr,i. In particular, the larger the length scale, the less important the in-
teraction. As for the linear part, again the main effect is that xr(t) depends
mostly on xr(t−1) and xr(t−2), though here there is a significant number of
cross-component dependence coefficients that are not zero. The parameter
σ2
r was found to be close to zero in all cases. From the first plot in Fig. 6,
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which again is consistent with xi(t) by xi(t−1) plots other than the displayed
i = 1, we see that the noise levels are low and are likely to be masked by
the other variance components. The small value of σr does not mean that
the uncertainty in our predictions will be low (see Eq. (36) for the way that
σ2
r affects the predictive variance). Even if these parameters were perfectly

known and σr were 0, the uncertainty could go to 0 only in the limit of infinite
data.

(a) Component 1 (b) Component 2

(c) Component 3 (d) Component 4

Figure 7: Median and 95% confidence interval for x(t) on February 26, 2014.

We can now make forecasts for an arbitrary number of steps ahead. To
investigate the suitability of normal densities usage, we start by ploting in
Fig. 5 the quantiles for one-step-ahead normalized prediction (shifted by its
mean and divided by the standard deviation). This plot is generated by
using all the observed values of the irradiance up to March 4, 2014. The
plot demonstrates that the model is able to properly quantify the forecast
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uncertainty to a satisfactory degree, in the sense that the predictive density
and the observed density generally agree. Problems remain, however, near
the tails of the predictive distribution. Since the prediction is Gaussian,
we can investigate the issue further with the Shapiro-Wilk [37] test. The
value of this normality test is W = 0.9077, and the corresponding p-value is
0.0022. While the p value is small, we note that when applying the test to a
completely misspecified distribution, such as for having a uniform or Cauchy
instead of a normal, the p value would be on the order of 1e− 9 for the same
amount of data. Hence, we deem the normal distribution assumption to be
reasonable for our purposes, particularly since with this amount of data a
meaningful alternative seems difficult to posit.

We show results for two representative days: February 26, 2014, which
was a sunny day, and March 1, 2014, which was a cloudy day. To initiate
our forecast, we observe the clearness index at 16:00 and 16:30 UTC. Then,
we make predictions for 8 hours ahead by sampling Eq. (36) recursively as
explained in Alg. 1. For the computation of the quantiles we present here,
we use 1,000 such samples.

Forecast for February 27, 2014 (sunny day). Figure 7 depicts the evolution
of the median and 95% confidence intervals of our prediction for the first four
components of x(t). We notice that the observed values always fall within the
error bars. Figures 8 and 9 show the evolution of the mean and the standard
deviation of C(t), respectively. Since the day is sunny, the mean remains
relatively constant. Notice that the standard deviation of C(t) does increase
with time but not very fast. In Fig. 10 we compare the observed C(t) with our
mean predictions at three different times. Notice that high-frequency features
are not captured properly. This result is expected, however, since the model
is built on the projected C(t). In Fig. 11, we compare the error between
projection of C(t) and our mean predictions, with the forecasted standard
deviation. We notice that the error is indeed well bounded by the standard
deviation, which shows that our model is at least conservative. In Fig. 12
we compare our point predictions for the solar irradiation at Lamont, OK,
with that of a recursive GP model based only on the ground observations,
which can be seen as our model when using only one component but which is
obtained directly from the data. In this case the model has 7 parameters and
350 observations. We see that the mean prediction is considerably better for
our model compared with the one that uses only data from the prediction
site, particularly a few hours after the start of the forecast window. Moreover,
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the standard deviation of the global data approach is smaller. We note here
that a discrepancy between the satellite and the ground observations. This
is expected, since the satellite solar irradiation is averaged over a square
kilometer while the ground measurement is almost pointwise. Overall we
find that the uncertainty margins are improved and that the predictions are
vastly improved when using satellite data compared with only site data.

Forecast for March 1, 2014 (cloudy day). Figure 13 depicts the evolution
of the median and 95% confidence intervals of our prediction for x(t). We
notice that x(t) takes more extreme values compared with Fig. 7. As a
result, some of the observations and, in particular, those of x2(t) do not
always fall within the error bars, though their errors are certainly on the
order of the standard deviations. Figures 14 and 15 show the evolution of
the mean and the standard deviation of C(t), respectively. Here we notice a
much larger variation of the mean prediction compared with Figures 8 and 9.
In addition, the standard deviation increases much more rapidly. In Fig. 16
we compare the observed C(t) with our mean predictions at three different
times. Here, the error is much larger, and the standard deviation captures
the order of the larger errors but not their pattern, though it does so for
the large feature persistent error. A look at the projected version of the
error (see Fig. 17) validates this observation. Another interesting property is
that the standard deviation increases faster near the boundaries of the patch
than at the center. The cause is that effects near the boundary depend also
on the clearness index field that is outside our small patch. In Fig. 18 we
compare our point predictions for the solar irradiation at Lamont, OK, with
that of a recursive GP model based only on ground observations. The mean
prediction has smaller error for the satellite data compared with the site
data, whereas the standard deviation is significantly smaller after a couple of
hours. The performance of our model is reasonable and certainly better than
the model based on ground observations. However, sharp variations such
as the ramps occurring at 20:00 UTC are not captured. We believe that in
order to capture ramp events one has to model the finer frequencies, which
is not done in the version of the model. We note here that ramps could not
be captured even with R = 8, which was the largest model that our limited
observations allowed us to train. The discrepancy between the measurements
at 16:00 and 16:30 UTC and the starting points of our forecasts is due to the
fact that with R = 8 the clearness index cannot be reconstructed perfectly
from the reduced space. Such a discrepancy is present also at 16:00 UTC in
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Fig. 12 but much less pronounced. However, we also note that our pPCA
approach reasonably captures that uncertainty.

In any case, we again observe a significant improvement in forecast quality
in comparison to the model that uses only site data, though in this case the
improvement is more pronounced in the variance estimation.

4. Conclusions

We presented a probabilistic forecast model for solar irradiation based on
satellite observations. The approach is based on separate modeling of the
clear sky model and of the clearness index, the ratio of irradiation and the
clear sky model. Since good clear sky models exist, only the clearness index
needs to be modeled statistically. The resulting model yields probabilistic es-
timates of the irradiation field every thirty minutes starting from consecutive
satellite measurements. The model is based on a probabilistic PCA approach
to reduce the forecast dimension, followed by a Gaussian process approach to
learn its dynamics. Using ground data from Lamont, OK, we demonstrate
that the model results in better predictions and uncertainty estimates for
the solar radiation compared with models that use only ground data at the
prediction site, which is the prevailing forecast method for solar energy oper-
ations. Moreover, since the data are available over the entire United States,
forecasts can be produced at any site in the United States with (what we an-
ticipate) to be comparable accuracy, without needing ground measurements.
This may prove important for very distributed solar energy systems.

This initial investigation can be improved in multiple ways, not the least
of which is access to more data as the AVHRR instrument acquires more
measurements. This extra data will allow us to consider more components
and richer covariance functions, and, in particular, to model the larger space
frequencies which we currently do not do as well as the satellite resolution
errors. As a result, we may be able to represent higher-fidelity spatial features
such as the ramps that we cannot capture well for the March 1, 2014, forecast.

We note, however, that in some applications solar energy sources are
spread over large (and perhaps well-chosen) areas. In such cases, the fact
that we capture well the low-frequency components of the error (interpreted
here as the projection on the space of the principal components, as is seen
in Figs. 11 and 17 indicates that spatially aggregated statistics of available
solar power are likely to be well captured. However, we would have no way of
obtaining that much ground data to validate the predictions. Nevertheless,
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(a) 2014-02-27 17:00 UTC, mean (b) 2014-02-27 17:00 UTC, std.

(c) 2014-02-27 18:00 UTC, mean (d) 2014-02-27 18:00 UTC, std.

(e) 2014-02-27 19:00 UTC, mean (f) 2014-02-27 19:00 UTC, std.

Figure 8: Starting with two observations on February 27, 2014, at 16:00 and 16:30 UTC
we take 1,000 sample paths of the clearness index C(t) following Alg. 1. The left column
shows the mean forecast and the right column the standard deviation. The forecast is
shown for every hour from 17:00 to 19:00 UTC.

25



(a) 2014-02-27 20:00 UTC, mean (b) 2014-02-27 20:00 UTC, std.

(c) 2014-02-27 21:00 UTC, mean (d) 2014-02-27 21:00 UTC, std.

(e) 2014-02-27 22:00 UTC, mean (f) 2014-02-27 22:00 UTC, std.

Figure 9: Starting with two observations on February 27, 2014, at 16:00 and 16:30 UTC
we take 1,000 sample paths of the clearness index C(t) following Alg. 1. The left column
shows the mean forecast and the right column the standard deviation. The forecast is
shown for every hour from 20:00 to 22:00 UTC.
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looking at the plots of the ground irradiation and satellite radiation data,
we find a good agreement, which indicates that this is likely to be true.
Moreover, one would need to choose a pattern for the solar plants, which
requires obtaining some realistic configurations; this will be the subject of
future analyses.

Another interesting direction is to combine these measurements with
weather forecast information, which –by itself– has difficulties in represent-
ing accurately irradiation information because of poor high-resolution cloud
forecasting. However, since weather forecast may capture certain large-scale
trends (e.g. wind), such information when combined with this approach
conceivably may result in better forecasts.

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of
Science, under Contract No. DE-AC02-06CH11357. We gratefully acknowl-
edge the use of the Blues cluster in the Laboratory Computing Resource
Center at Argonne National Laboratory. We thank Christine Molling from
the Cooperative Institute for Meteorological Satellite Studies, Space Science
and Engineering Center, at the University of Wisconsin-Madison for provid-
ing access to CLAVRx Satellite data. We also acknowlegde the Atmospheric
Radiation Measurement (ARM) Program for providing access to the SGP
ground irradiance measurements.

Appendix A. Details of the clear sky model

As discussed in Sec. 2.2, we use Ineichen’s model [12] as our clear sky
model. Here we briefly discuss the details of its implementation that pertain
to this work. For the actual model, the reader may consult the original
reference. Ineichen’s model requires the solar zenith, the extraterrestrial
irradiation, the surface elevation, the water vapor content, and the aerosol
optical depth at 700 nm.

The solar zenith is computed by using the Solar Position Algorithm (SPA)
[38]. The extraterrestrial irradiation is modeled as [39]

Iext(t) = I0

(
R(t)

Rav

)2

, (A.1)
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where R(t) is the Earth-Sun distance at time t, I0 = 1361 W/m2 and
Rav = 1.0000010178 AU is the average Earth-Sun distance. The Earth-Sun
distance is also computed by using SPA. Since the sensitivity of the model to
the surface elevation is small and the patch of the CONUS scan we are con-
centrating on is relatively flat, we take the surface elevation to be constant
and equal to 320 m. The water vapor content and the aerosol optical depth
at 700 nm are also taken to be constant at 0.3 cm and 0.15, respectively.
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Parameter 1 2 3 4 5 6 7 8
vr,0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vr,1 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vr,2 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00
vr,3 0.00 0.00 0.35 0.00 0.01 0.00 0.00 0.00
vr,4 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00
vr,5 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.00
vr,6 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00
vr,7 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.00
vr,8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30
vr,9 1.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vr,10 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00
vr,11 0.00 0.00 2.39 0.00 0.01 0.00 0.00 0.00
vr,12 0.00 0.00 0.00 2.01 0.00 0.00 0.00 0.00
vr,13 0.00 0.00 0.00 0.00 2.25 0.00 0.00 0.00
vr,14 0.00 0.00 0.00 0.00 0.00 2.02 0.00 0.00
vr,15 0.00 0.00 0.00 0.00 0.00 0.00 4.27 0.00
vr,16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.08
s2
r 0.01 0.01 0.02 0.02 0.04 0.04 0.07 0.06

`r,1 0.17 * * * * * * 1.20
`r,2 2.24 2.19 * * 1.22 0.44 * 1.40
`r,3 * * * * 0.87 * * 2.02
`r,4 * * 2.69 * 5.99 * * 3.91
`r,5 * * * 3.79 * 1.37 * *
`r,6 * * * 0.21 * * * *
`r,7 * * * * * * 1.68 *
`r,8 * * * 3.08 0.96 * 0.98 0.46
`r,9 0.11 0.26 1.16 1.26 * 0.78 * *
`r,10 * 1.09 * * * 0.89 0.91 *
`r,11 * 1.65 0.31 3.24 0.80 * * *
`r,12 1.52 0.63 * * * * 2.40 0.96
`r,13 * * * * 0.29 * 8.32 *
`r,14 * * 5.70 0.39 * 0.32 4.07 4.16
`r,15 * * 1.50 4.14 * * 0.75 *
`r,16 * * 0.59 6.07 * * * 0.37
σ2
r 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: The infered parameters of the dynamic model. The ‘*’ stand for length scales
that were estimated to be larger than 10 and, therefore, unimportant.
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(a) 2014-02-27 18:30 UTC, error in pre-
diction

(b) 2014-02-27 18:30 UTC, std.

(c) 2014-02-27 19:00 UTC, error in pre-
diction

(d) 2014-02-27 19:00 UTC, std.

(e) 2014-02-27 19:30 UTC, error in pre-
diction

(f) 2014-02-27 19:30 UTC, std.

Figure 10: Comparison of the real absolute error in the prediction (left) with the standard
deviation of our forecast (right) on February 27, 2014.
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(a) 2014-02-27 18:30 UTC, projected er-
ror in prediction

(b) 2014-02-27 18:30 UTC, std.

(c) 2014-02-27 19:00 UTC, projected er-
ror in prediction

(d) 2014-02-27 19:00 UTC, std.

(e) 2014-02-27 19:30 UTC, projected er-
ror in prediction

(f) 2014-02-27 19:30 UTC, std.

Figure 11: Comparison of the absolute projected error in the prediction (left) with the
standard deviation of our forecast (right) on February 27, 2014.
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Figure 12: Comparison of our point forecast at Lamont, OK, with a recursive GP model
based solely on ground observations.
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(a) Component 1 (b) Component 2

(c) Component 3 (d) Component 4

Figure 13: Median and 95% confidence interval for x(t) on March 1, 2014.
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(a) 2014-03-01 17:00 UTC, mean (b) 2014-03-01 17:00 UTC, std.

(c) 2014-03-01 18:00 UTC, mean (d) 2014-03-01 18:00 UTC, std.

(e) 2014-03-01 19:00 UTC, mean (f) 2014-03-01 19:00 UTC, std.

Figure 14: Starting with two observations on March 1, 2014, at 16:00 and 16:30 UTC
we take 1,000 sample paths of the clearness index C(t) following Alg. 1. The left column
shows the mean forecast and the right column the standard deviation. The forecast is
shown for every hour from 17:00 to 19:00 UTC.
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(a) 2014-03-01 20:00 UTC, mean (b) 2014-03-01 20:00 UTC, std.

(c) 2014-03-01 21:00 UTC, mean (d) 2014-03-01 21:00 UTC, std.

(e) 2014-03-01 22:00 UTC, mean (f) 2014-03-01 22:00 UTC, std.

Figure 15: Starting with two observations on March 1, 2014, at 16:00 and 16:30 UTC
we take 1,000 sample paths of the clearness index C(t) following Alg. 1. The left column
shows the mean forecast and the right column the standard deviation. The forecast is
shown for every hour from 20:00 to 22:00 UTC.
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(a) 2014-03-01 17:00 UTC, error in pre-
diction

(b) 2014-03-01 17:00 UTC, std.

(c) 2014-03-01 18:30 UTC, error in pre-
diction

(d) 2014-03-01 18:30 UTC, std.

(e) 2014-03-01 19:00 UTC, error in pre-
diction

(f) 2014-03-01 19:00 UTC, std.

Figure 16: Comparison of real absolute error in the prediction (left) with the standard
deviation of our forecast (right) on March 1, 2014.
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(a) 2014-03-01 17:00 UTC, projected er-
ror in prediction

(b) 2014-03-01 17:00 UTC, std.

(c) 2014-03-01 18:30 UTC, projected er-
ror in prediction

(d) 2014-03-01 18:30 UTC, std.

(e) 2014-03-01 19:00 UTC, projected er-
ror in prediction

(f) 2014-03-01 19:00 UTC, std.

Figure 17: Comparison of absolute projected error in the prediction (left) with the
standard deviation of our forecast (right) on March 1, 2014.

41



Figure 18: Comparison of our point forecast at Lamont, OK, with a recursive GP model
based solely on ground observations.
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